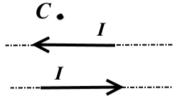

3.3	МАГНИТНОЕ ПОЛЕ
3.3.1	Механическое взаимодействие магнитов. Магнитное поле. Вектор магнитной индукции.
	Принцип суперпозиции магнитных полей: Линии магнитного поля. Картина линий поля полосового и подковообразного постоянных магнитов
1	

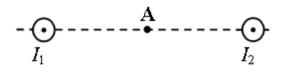
1. К магнитной стрелке (северный полюс затемнен, см. рисунок), которая может поворачиваться вокруг вертикальной оси, перпендикулярной плоскости чертежа, поднесли постоянный полосовой магнит. При этом стрелка

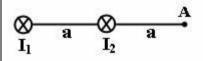
- **1**) повернется на 180°
- 2) повернется на 90° по часовой стрелке
- 3) повернется на 90° против часовой стрелки
- 4) останется в прежнем положении

Ответ: 4

2. К магнитной стрелке (северный полюс затемнен, см. рисунок), которая может поворачиваться вокруг вертикальной оси, перпендикулярной плоскости чертежа, поднесли постоянный полосовой магнит. При этом стрелка

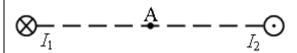

- **1**) повернется на 180°
- 2) повернется на 90° по часовой стрелке
- 3) повернется на 90° против часовой стрелки
- 4) останется в прежнем положении
- 3. Магнитная стрелка компаса зафиксирована (северный полюс затемнен, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит, затем освободили стрелку. При этом стрелка


- 1) повернется на 180°
- 2) повернется на 90° против часовой стрелки
- 3) повернется на 90° по часовой стрелке
- 4) останется в прежнем положении
- 4. К магнитной стрелке компаса, зафиксированной в положении, представленном на рисунке, поднесли магнит. После освобождения фиксатора стрелка компаса установится в положении равновесия,


- 1) повернувшись на 180°
- 2) повернувшись на 90° по часовой стрелке
- 3) повернувшись на 90° против часовой стрелки
- оставшись в прежнем положении
- 5. По двум тонким прямым проводникам, параллельным друг другу, текут одинаковые токи I (см. рисунок). Как направлено создаваемое ими магнитное поле в точке \mathbb{C} ?

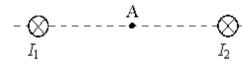
- 1) $_{\text{K Ham}} \odot$ 2) $_{\text{OT Hac}} \otimes$
- 3) _{BBenx ↑}
- **4**) _{вниз} ј
- 6. Магнитное поле создано в точке А двумя параллельными длинными проводниками с токами I_1 и I_2 , расположенными перпендикулярно плоскости чертежа. Векторы в точке А направлены в плоскости чертежа следующим образом:

- 1) - вверх, вниз
- 2) - вверх, вверх
- 3) - вниз, вверх
- 4) - вниз, вниз
- 7. Магнитное поле создано двумя параллельными длинными проводниками с токами I_1 и I_2 , расположенными перпендикулярно плоскости чертежа. Векторы и в точке А направлены в плоскости чертежа следующим образом:

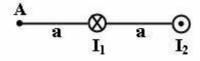


- 1) - вверх, вниз
- 2) - вверх, вверх
- 3) - вниз, вверх
- 4) - вниз, вниз
- 8. Магнитное поле

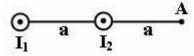
токами I_1 и I_2 , расположенными перпендикулярно плоскости чертежа. Векторы и в точке А направлены в плоскости чертежа следующим образом:


- 1) вверх, вниз
- **2**) вверх, вверх
- 3) вниз, вверх
- 4) вниз, вниз

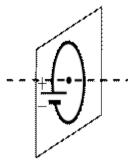
9. Магнитное поле создано в точке A двумя параллельными длинными проводниками с токами I_1 и I_2 , расположенными перпендикулярно плоскости чертежа. Векторы и в точке A направлены в плоскости чертежа следующим образом:


- 1) вверх, вниз
- 2) вверх, вверх
- 3) вниз, вверх
- **4**) вниз, вниз

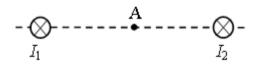
10. Магнитное поле создано в точке A двумя параллельными длинными проводниками с токами I_1 и I_2 , расположенными перпендикулярно плоскости чертежа. Векторы и в точке A направлены в плоскости чертежа следующим образом:

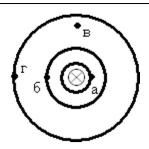

- 1) вверх, вниз
- **2**) BBEPX, BBEPX
- 3) вниз, вверх
- 4) вниз, вниз

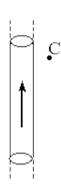
11. Магнитное поле создано двумя параллельными длинными проводниками с токами I_1 и I_2 , расположенными перпендикулярно плоскости чертежа. Векторы и в точке А направлены в плоскости чертежа следующим образом:



- 1) вверх, вниз
- 2) вверх, вверх
- 3) вниз, вверх
- 4) вниз, вниз

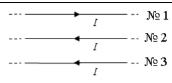

12. Магнитное поле создано двумя параллельными длинными проводниками с токами I_1 и I_2 , расположенными перпендикулярно плоскости чертежа. Векторы и в точке А направлены в плоскости чертежа следующим образом:

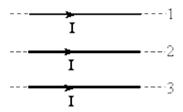

- 1) вверх, вниз
- 2) BBepx, BBepx
- 3) вниз, вверх
- 4) вниз, вниз
- 13. На рисунке изображён круглый проволочный виток, по которому течёт электрический ток. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен


- 1) вертикально вверх в плоскости витка ↑
- 2) вертикально вниз в плоскости витка ↓
- 3) вправо перпендикулярно плоскости витка \rightarrow
- **4**) влево перпендикулярно плоскости витка ←
- 14. Магнитное поле создано в точке А двумя параллельными длинными проводниками с токами I_1 и I_2 , расположенными перпендикулярно плоскости чертежа. Векторы и в точке А направлены в плоскости чертежа следующим образом:

- **1**) вверх, вниз
- **2**) вверх, вверх
- 3) вниз, вниз
- **4**) вниз, вверх
- 3.3.2 Опыт Эрстеда. Магнитное поле проводника с током. Картина линий поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током.
 - 1. На рисунке (вид сверху) показана картина линий индукции магнитного поля прямого проводника с током. В какой из четырех точек индукция магнитного поля наименьшая?

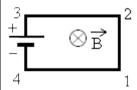
- 1) _{в точке а}
- **2**) в точке б
- **3**) в точке в
- **4**) в точке г
- 2. На рисунке изображен цилиндрический проводник, по которому протекает электрический ток. Направление тока указано стрелкой. Как направлен вектор магнитной индукции в точке С?


- 1) в плоскости чертежа вверх
- 2) в плоскости чертежа вниз
- 3) от нас перпендикулярно плоскости чертежа
- 4) к нам перпендикулярно плоскости чертежа
- 3. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в плоскости чертежа. В центре витка вектор индукции магнитного поля тока направлен

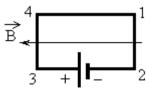

- 1) к нам перпендикулярно плоскости чертежа О
- 2) от нас перпендикулярно плоскости чертежа \otimes
- 3) $вправо \rightarrow$
- **4**) _{влево} ←
- 4. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в плоскости чертежа. В центре витка вектор индукции магнитного поля тока направлен

	1) от нас перпендикулярно плоскости чертежа \otimes					
	2) к нам перпендикулярно плоскости чертежа ⊙					
	3) _{влево} ←					
	4) вправо →					
	5. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в горизонтальной плоскости. В центре витка вектор индукции магнитного поля тока направлен					
	1) вертикально вверх					
	2) влево ←					
	3) _{вправо} →					
	4) вертикально вниз ↓					
	6. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен					
	1) punano -> 2) pentukantuo puna -					
	вправо — вертикально вниз у					
	3) вертикально вверх4) влево ←					
	7. По двум тонким прямым проводникам, параллельным друг другу, текут одинаковые токи <i>i</i> (см. рисунок), направление которых указано стрелками. Как направлен вектор индукции создаваемого ими магнитного поля в точке D?					
	1) BBepx ↑ 2) K HAM ⊙ 3) OT HAC ⊗ 4) BHU3 ↓					
3.3.3	Сила Ампера, её направление и величина: F_A = IBl sin α , где α – угол между направлением проводника и вектором					
	1. Как направлена сила Ампера, действующая на проводник № 3 со стороны двух других (см. рисунок), если все проводники тонкие, лежат в одной плоскости и параллельны друг другу? По проводникам идёт одинаковый ток силой I .					

- 1) вверх ↑
- 2) вниз ↓
- 3) к нам ⊙
- 4) or Hac⊗
- 2. Как направлена сила Ампера, действующая на проводник №1 со стороны двух других (см. рисунок), если все проводники тонкие, лежат в одной плоскости, параллельны друг другу и расстояния между соседними проводниками одинаковы? (I сила тока.)

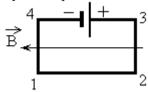


- 1) _{к нам} ⊙
- 2) _{от нас} ⊗
- **3**) _{BBepx} ↑
- **4**) _{вниз} ↓
- 3. Прямолинейный проводник подвешен горизонтально на двух нитях в однородном магнитном поле с индукцией 10 мТл. Вектор магнитной индукции горизонтален и перпендикулярен проводнику. Во сколько раз изменится сила натяжения нитей при изменении направления тока на противоположное? Масса единицы длины проводника 0,01 кг/м, сила тока в проводнике 5 А.
- **1**) 1,5 pa3a
- **2**) 2 pasa
- **3**) 2,5 pasa
- **4**) 3 pasa
- 4. С какой силой действует однородное магнитное поле с индукцией 2,5 Тл на проводник длиной 50 см, расположенный под углом 30° к вектору индукции, при силе тока в проводнике 0,5 А?
- 1) 31,25 H
- **2**) 54,38 H
- **3**) 0,55 H
- **4**) 0,3125 H
- 5. Круговой виток с током, расположенный горизонтально, помещен в магнитное поле, линии магнитной индукции которого перпендикулярны плоскости витка (см. рисунок). Под действием сил Ампера виток

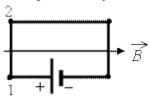


- 1) растягивается
- 2) сжимается
- 3) перемещается вниз
- 4) перемещается вверх
- 6. Как взаимодействуют два параллельных друг другу проводника, если электрический ток в них протекает в противоположных направлениях?
- 1) сила взаимодействия равна нулю
- 2) проводники притягиваются

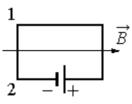
- 3) проводники отталкиваются
- 4) проводники поворачиваются в одинаковом направлении
- 7. Электрическая цепь, состоящая из четырех прямолинейных горизонтальных проводников (1-2,2-3,3-4,4-1) и источника постоянного тока, находится в однородном магнитном поле, вектор магнитной индукции которого направлен вертикально вниз (см. рисунок, вид сверху). Куда направлена сила Ампера, действующая на проводник 1-2?

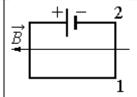


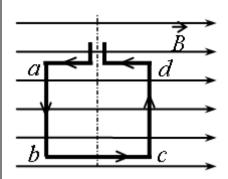
- 1) вертикально вверх
- 2) вертикально вниз
- горизонтально вправо
- 4) горизонтально влево
- 8. Участок проводника длиной 10 см находится в магнитном поле индукцией 50 мТл. Сила электрического тока, протекающего по проводнику, 10 А. Какую работу совершает сила Ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.
- **1**) 0,004 Дж
- **2**) 0,4 Дж
- **3**) 0,5 Дж
- **4)** 0,625 Дж
- 9. Основное назначение электродвигателя заключается в преобразовании
 - 1) механической энергии в электрическую энергию
- 2) электрической энергии в механическую энергию
- 3) внутренней энергии в механическую энергию
- 4) механической энергии в различные виды энергии
- 10. В основе работы электродвигателя лежит
- 1) действие магнитного поля на проводник с электрическим током
- 2) электростатическое взаимодействие зарядов
- 3) явление самоиндукции
- 4) действие электрического поля на электрический заряд
- 11. Электрическая цепь, состоящая из четырех прямолинейных горизонтальных проводников (1-2, 2-3, 3-4, 4-1) и источника постоянного тока, находится в однородном магнитном поле, вектор магнитной индукции которого направлен горизонтально влево (см. рисунок, вид сверху). Куда направлена вызванная этим полем сила Ампера, действующая на проводник 3-4?

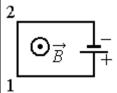


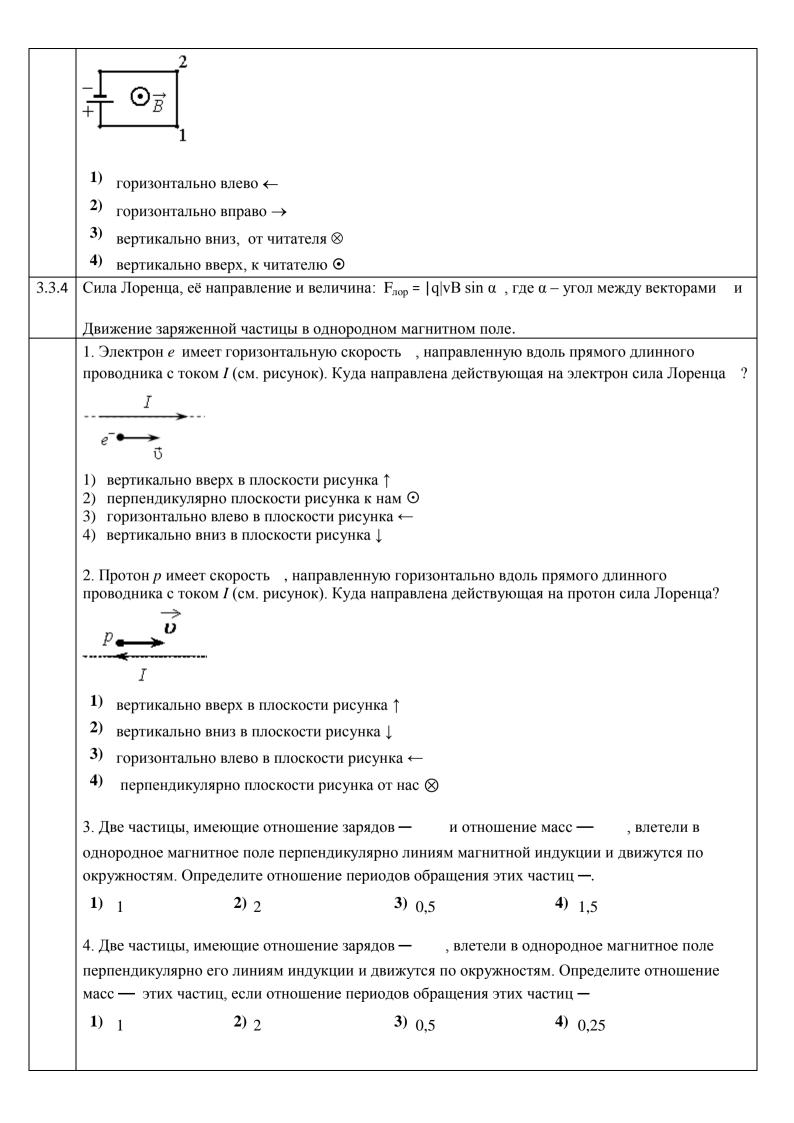
- 1) вертикально вверх О
- 2) вертикально вниз ⊗
- $^{3)}$ горизонтально вправо \rightarrow


- 4) горизонтально влево ←
- 12. Электрическая цепь, состоящая из четырех прямолинейных горизонтальных проводников (1-2,2-3,3-4,4-1) и источника постоянного тока, находится в однородном магнитном поле, вектор магнитной индукции которого направлен горизонтально влево (см. рисунок, вид сверху). Куда направлена вызванная этим полем сила Ампера, действующая на проводник 4-1?


- 1) $_{\text{горизонтально влево}} \leftarrow$
- 2) горизонтально вправо \rightarrow
- 3) $_{\rm вертикально\ вниз\ }\otimes$
- 4) вертикально вверх О
- 13. Электрическая цепь, состоящая из прямолинейных горизонтальных проводников и источника постоянного тока, находится в однородном магнитном поле, вектор индукции которого направлен горизонтально вправо (см. рисунок, вид сверху). Куда направлена вызванная этим полем сила Ампера, действующая на проводник 1–2?


- 1) вертикально вверх, к читателю ↑
- 2) вертикально вниз, от читателя ↓
- 3) горизонтально вправо \rightarrow
- 4) горизонтально влево ←
- 14. Электрическая цепь, состоящая из горизонтальных прямолинейных проводников и источника постоянного тока, находится в однородном магнитном поле, вектор магнитной индукции которого направлен горизонтально вправо (см. рисунок, вид сверху). Куда направлена вызванная этим полем сила Ампера, действующая на проводник 1–2?

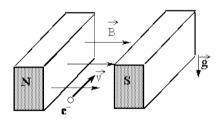

- 1) вертикально 2) вертикально вверх ⊙ 3) горизонтально 4) горизонтально вправо влево ←
- 15. Электрическая цепь, состоящая из прямолинейных горизонтальных проводников и источника постоянного тока, находится в однородном магнитном поле, вектор магнитной индукции которого направлен горизонтально влево (см. рисунок, вид сверху). Куда направлена вызванная этим полем сила Ампера, действующая на проводник 1–2?


- 1) $_{\text{горизонтально влево}} \leftarrow$
- 2) горизонтально вправо \rightarrow
- 3) вертикально вверх ⊙
- 4) вертикально вниз ⊗
- 16. Прямолинейный проводник длины L с током I помещен в однородное магнитное поле, направление линий индукции B которого противоположно направлению тока. Если силу тока уменьшить в 2 раза, а индукцию магнитного поля увеличить в 4 раза, то действующая на проводник сила Ампера
 - **1)** увеличится в 2 раза
- 2) уменьшится в 4 раза
- 3) не изменится
- 4) уменьшится в 2 раза
- 17. Прямолинейный проводник длиной L с током I помещен в однородное магнитное поле перпендикулярно линиям индукции B. Как изменится сила Ампера, действующая на проводник, если его длину увеличить в 2 раза, а силу тока в проводнике уменьшить в 4 раза?
 - не изменится
- 2) уменьшится в 4 раза
- 3) увеличится в 2 раза
- 4) уменьшится в 2 раза
- 18. Прямолинейный проводник длиной L с током I помещен в однородное магнитное поле перпендикулярно линиям индукции . Как изменится сила Ампера, действующая на проводник, если силу тока уменьшить в 2 раза, а индукцию магнитного поля увеличить в 4 раза?
 - 1) уменьшится в 4 раза
 - 2) уменьшится в 2 раза
- 3) увеличится в 4 раза
- 4) увеличится в 2 раза
- 19. Квадратная рамка расположена в однородном магнитном поле в плоскости линий магнитной индукции (см. рисунок). Направление тока в рамке показано стрелками. Как направлена сила, действующая на сторону bc рамки со стороны внешнего магнитного поля ?

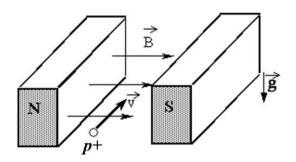
- 1) перпендикулярно плоскости чертежа, от нас ⊗
- 2) перпендикулярно плоскости чертежа, к нам 🔾
- 3) вдоль направления линий магнитной индукции →
- 4) сила равна нулю
- 20. Медный проводник расположен между полюсами постоянного магнита перпендикулярно линиям индукции магнитного поля. Определите площадь поперечного сечения проводника, если сила Ампера, действующая на него, равна 5 Н, модуль вектора магнитной индукции магнитного поля 10 мТл, а напряжение, приложенное к концам проводника, 8,5 В. Удельное сопротивление меди $\rho = 1.7 \cdot 10^{-2} \, \text{Om mm}^2 / \text{M}.$
- 1) 10^{-3} MM^2
- 2) 1 MM^2 3) 5 MM^2
- 4) 8.5 MM^2
- 21. В однородном горизонтальном магнитном поле с индукцией 0,01 Тл находится прямолинейный проводник, расположенный в горизонтальной плоскости перпендикулярно линиям индукции поля. Какой ток следует пропустить по проводнику, чтобы сила Ампера уравновесила силу тяжести? Масса единицы длины проводника 0,01 кг/м.
- 1) 5 A
- **2)** 7 A
- **3**) 10 A
- **4)** 20 A
- 22. Электрическая цепь, состоящая из горизонтальных прямолинейных проводников и источника постоянного тока, находится в однородном магнитном поле, вектор магнитной которого направлен вертикально вверх см. рисунок, вид сверху). Куда направлена вызванная этим полем сила Ампера, действующая на проводник 1-2?

- 1) $_{\text{горизонтально вправо}} \rightarrow$
- горизонтально влево ←
- вертикально вниз ⊗
- вертикально вверх •
- 23. Электрическая цепь, состоящая из прямолинейных горизонтальных проводников и источника постоянного тока, находится в однородном магнитном поле, вектор магнитной которого направлен вертикально вверх (см. рисунок, вид сверху). Куда направлена вызванная этим полем сила Ампера, действующая на проводник 1-2?

	тон в однородном магнитном г ужности с той же скоростью α-	1.0		
	ужности с тои же скоростью о- ицы по сравнению с протоном		и, частота обращения и	энергия
	величиться	A		
	меньшиться			
	е измениться			
Запиші	ите <u>в таблицу</u> выбранные цифр	ры для каждой физической в	еличины. Цифры в отве	ге могу
повтор		TI C		
	Радиус окружности	Частота обращения	Энергия частицы	
с той ж обраще 1) уве:	тон в однородном магнитном га скоростью α-частица, радиустния α-частицы по сравнению спичиться	с окружности, центростреми		
3) не и	измениться			
	ите <u>в таблицу</u> выбранные цифр	оы для каждой физической в	величины. Цифры в отве	ге могу
повтор	яться.	110,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7
	Радиус окружности	Центростремительное ускорение	Период обращения	
индукц	грон и протон влетают в однор ции на расстоянии L друг от др ующей на нейтрон к молулю с	оодное магнитное поле перпаруга с одинаковыми скорости	ями v. Отношение моду	ля силы
индукц действу момент	ии на расстоянии L друг от др ующей на нейтрон к модулю с г времени, равно	оодное магнитное поле перпа руга с одинаковыми скорости илы, действующей на прото	ями v. Отношение моду н, со стороны магнитног	ля силы
индуки действ	ии на расстоянии L друг от др ующей на нейтрон к модулю с	оодное магнитное поле перпаруга с одинаковыми скорости	ями v. Отношение моду	ля силы
индукц действу момент 1) 1 8. Как 1	ии на расстоянии L друг от др ующей на нейтрон к модулю с г времени, равно	оодное магнитное поле перпа оуга с одинаковыми скорости илы, действующей на прото 3) 2000	ями v. Отношение моду. н, со стороны магнитнов 4) 1/2000 родном магнитном поле	ля силы го поля
индукц действу момент 1) 1 8. Как и	ции на расстоянии L друг от др ующей на нейтрон к модулю с г времени, равно 2) 0 изменится период обращения з	оодное магнитное поле перпа оуга с одинаковыми скорости илы, действующей на прото 3) 2000	ями v. Отношение моду. н, со стороны магнитнов 4) 1/2000 родном магнитном поле	ля силы го поля
индукц действу момент 1) 1 8. Как н ее скор 1) ун	ции на расстоянии L друг от др ующей на нейтрон к модулю с г времени, равно 2) 0 изменится период обращения з ости в п раз? Рассмотрите нер	оодное магнитное поле перпа оуга с одинаковыми скорости илы, действующей на прото 3) 2000	ями v. Отношение моду. н, со стороны магнитнов 4) 1/2000 родном магнитном поле	ля силы го поля
индукц действу момент 1) 1 8. Как н ее скор 1) ун 2) ун	ции на расстоянии L друг от др ующей на нейтрон к модулю с г времени, равно 2) 0 изменится период обращения з рости в п раз? Рассмотрите нер	оодное магнитное поле перпа оуга с одинаковыми скорости илы, действующей на прото 3) 2000	ями v. Отношение моду. н, со стороны магнитнов 4) 1/2000 родном магнитном поле	ля силы го поля
индуки действу момент 1) 1 8. Как и ее скор 1) ун 2) ун 3) ун	ции на расстоянии L друг от др ующей на нейтрон к модулю с г времени, равно 2) 0 изменится период обращения з рости в п раз? Рассмотрите нер величится в п раз величится в п ³ раз величится в п ² раз	оодное магнитное поле перпа оуга с одинаковыми скорости илы, действующей на прото 3) 2000	ями v. Отношение моду. н, со стороны магнитнов 4) 1/2000 родном магнитном поле	ля силы го поля
индуки действу момент 1) 1 8. Как и ее скор 1) ун 2) ун 3) ун 4) но 9. Элек индуки	ции на расстоянии L друг от др ующей на нейтрон к модулю с г времени, равно 2) 0 изменится период обращения з рости в п раз? Рассмотрите нер величится в п раз величится в п раз	родное магнитное поле перпаруга с одинаковыми скоростилы, действующей на прото 3) 2000 заряженной частицы в однорелятивистский случай (v <<	ями v. Отношение модуль, со стороны магнитнов 4) 1/2000 родном магнитном поле c).	ля силы го поля при уве
индуки действу момент 1) 1 8. Как и ее скор 1) ун 2) ун 3) ун 4) но 9. Элек индуки	ции на расстоянии L друг от друющей на нейтрон к модулю с времени, равно 2) 0 изменится период обращения в рости в п раз? Рассмотрите неровеличится в п раз величится в п раз величится в п ² раз величится в п ² раз величится в праз величитс	родное магнитное поле перпаруга с одинаковыми скоростилы, действующей на прото 3) 2000 заряженной частицы в однорелятивистский случай (v <<	ями v. Отношение модуль, со стороны магнитнов 4) 1/2000 родном магнитном поле c).	ля силы го поля при уве
индуки действу момент 1) 1 8. Как и ее скор 1) ун 2) ун 4) но 9. Элек индуки действу	ции на расстоянии L друг от друющей на нейтрон к модулю с г времени, равно 2) 0 изменится период обращения з рости в п раз? Рассмотрите неровеличится в п раз величится в п ³ раз величится в п ² раз е изменится строн и протон влетают в одновии на расстоянии L друг от друющих на них со стороны маги	родное магнитное поле перпаруга с одинаковыми скоростилы, действующей на прото 3) 2000 заряженной частицы в однорелятивистский случай (v <<	ями v. Отношение модуль, со стороны магнитнов 4) 1/2000 родном магнитном поле c).	ля силы го поля при уве
индуки действу момент 1) 1 8. Как и ее скор 1) ун 2) ун 4) но 9. Элек индуки действу 1) = 2) =	ции на расстоянии L друг от друющей на нейтрон к модулю с г времени, равно 2) 0 изменится период обращения з рости в п раз? Рассмотрите неровеличится в п раз величится в п раз величится в п ² раз величится в п ² раз е изменится строн и протон влетают в одножи на расстоянии L друг от друющих на них со стороны маги 0	родное магнитное поле перпаруга с одинаковыми скоростилы, действующей на прото 3) 2000 заряженной частицы в однорелятивистский случай (v <<	ями v. Отношение модуль, со стороны магнитнов 4) 1/2000 родном магнитном поле c).	ля силы го поля при уве
индуки действу момент 1) 1 8. Как пескор 1) ун 2) ун 4) не 9. Элек индуки действу 1) = 2) = 3) ≈	ции на расстоянии L друг от друющей на нейтрон к модулю с г времени, равно 2) 0 изменится период обращения з рости в п раз? Рассмотрите неровеличится в п раз величится в п ³ раз величится в п ² раз е изменится строн и протон влетают в одновии на расстоянии L друг от друющих на них со стороны маги	родное магнитное поле перпаруга с одинаковыми скоростилы, действующей на прото 3) 2000 заряженной частицы в однорелятивистский случай (v <<	ями v. Отношение модуль, со стороны магнитнов 4) 1/2000 родном магнитном поле c).	ля силы го поля при уве
индуки действу момент 1) 1 8. Как и ее скор 1) уг 2) уг 3) уг 4) не 9. Элек индуки действу 1) = 2) = 3) ≈ 4) ≈ 10. Ней индуки	ции на расстоянии L друг от друющей на нейтрон к модулю с г времени, равно 2) 0 изменится период обращения з рости в п раз? Рассмотрите неровеличится в п раз величится в п раз величится в п ² раз величится в п ² раз е изменится строн и протон влетают в одножи на расстоянии L друг от друющих на них со стороны маги 0 1 2000	родное магнитное поле перисорга с одинаковыми скороста илы, действующей на прото 3) 2000 заряженной частицы в одног елятивистский случай (v << родное магнитное поле периорга с одинаковыми скороста нитного поля в этот момент	ями v. Отношение модуль, со стороны магнитной 4) 1/2000 родном магнитном поле с). Пендикулярно вектору мажни v. Отношение модульнения, времени, времени, отношение модулями v. Отношение модуление модуле	ля силь го поля при уве агнитно поля магнит

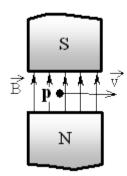

) равно 1

- 3) много больше 1
- 4) много меньше 1, но не равно нулю
- 11. Электрон и протон влетают в однородное магнитное поле перпендикулярно вектору магнитной индукции со скоростями v и 2v соответственно. Отношение модуля силы, действующей на электрон со стороны магнитного поля, к модулю силы, действующей на протон, равно
 - **1**) 4 · 1
- **2**) 2:1


3) 1:1

- **4)** 1:2
- 12. Радиусы окружностей R_{α} и R_p , по которым движутся α -частица и протон ($m_{\alpha}=4m_p$; $q_{\alpha}=2q_p$), влетевшие в однородное магнитное поле перпендикулярно вектору магнитной индукции с одной и той скоростью, соотносятся как
- 1) $R_{\alpha} = 2R_{p}$
- $\mathbf{2)} \quad \mathbf{R}_{\alpha} = 4\mathbf{R}_{\mathbf{p}}$
- $\mathbf{3)} \quad \mathbf{R}_{\alpha} = \mathbf{R}_{p}/2$
- **4)** $R_{\alpha} = R_{p}/4$
- 13. Два первоначально покоившихся электрона ускоряются в электрическом поле: первый в поле с разностью потенциалов U, второй -2U. Ускорившиеся электроны попадают в однородное магнитное поле, линии индукции которого перпендикулярны скорости движения электронов. Отношение радиусов кривизны траекторий первого и второго электронов в магнитном поле равно
- 1) $\frac{1}{4}$
- 2) $\frac{1}{2}$

- 3) $\frac{\sqrt{2}}{2}$
- **4)** $\sqrt{2}$
- 14. Электрон е⁻, влетевший в зазор между полюсами электромагнита, имеет горизонтально направленную скорость , перпендикулярную вектору индукции магнитного поля (см. рисунок). Куда направлена действующая на него сила Лоренца ?

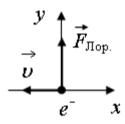


- 1) вертикально вниз
- 2) горизонтально влево
- 3) вертикально вверх
- 4) горизонтально вправо
- 15. Протон р⁺, влетевший в зазор между полюсами электромагнита, имеет горизонтально направленную скорость , перпендикулярную вектору индукции магнитного поля (см. рисунок). Куда направлена действующая на него сила Лоренца ?

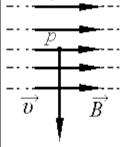
4) горизо 16. Электр вектору ма Отношени	кально вверх			
16. Электр вектору ма Отношени				
вектору ма Отношени	онтально вправо			
	гнитной индукции на ра е модуля силы, действую твующей на альфа-части	сстоянии L друг от дру ощей со стороны магни ицу, в этот момент врем		
1) 4:1	2) 2:1	3) 1:1	4) 1:2	
магнитные поле с инду	поля, векторы магнитной укцией B_1 , вторая – в поле	й индукции которых пергес индукцией B_2 . Найди	ласс — влетели в однородно пендикулярны их скоростям: перте отношение времен — , затрач	рвая – в
-	-		ков, а отношение индукций —	
1) 1	2) ₂	3) 8	4) ₄	
перпендику		й индукции. Найдите отн	ели в однородное магнитное по ошение масс частиц — , если и екторий —	
1) 1	2) ₂	3) 8	4) ₄	
частиц — ,	если их скорости одинако	овы, а отношение модуле		асктори
1) 1	2) 2	3) 8	4) 4	
20. Две час	стицы, имеющие отноше	ение масс — , влете.	ли в однородное магнитное пол	e
			ошение зарядов частиц — , если	
скорости о,	динаковы, а отношение ра	адиусов траекторий: —		
	2) ₂	3) 8	4) ₄	

- 1) вертикально вниз
- 2) вертикально вверх
- 3) горизонтально на нас О
- 4) горизонтально от нас ⊗
- 22. Протон р, влетевший в зазор между полюсами электромагнита, имеет горизонтальную скорость , перпендикулярную вектору индукции магнитного поля, направленного вертикально (см. рисунок). Куда направлена действующая на него сила Лоренца ?

- 1) горизонтально к нам О
- 2) горизонтально от нас ⊗
- 3) вертикально вверх ↑
- 4) вертикально вниз ↓
- 23. Протон p, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, направленному вертикально (см. рисунок). Куда направлена действующая на него сила Лоренца ?


- 1) от наблюдателя ⊗
- 2) к наблюдателю О
- 3) горизонтально вправо \rightarrow
- 4) вертикально вниз ↓
- 24. Частица массой m, несущая заряд q, движется в однородном магнитном поле с индукцией B по окружности радиуса R со скоростью u. Что произойдет с радиусом орбиты, периодом обращения и кинетической энергией частицы, если эта частица будет двигаться в том же магнитном поле с бо́льшей скоростью?

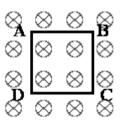
К каждой позиции первого столбца подберите соответствующую позицию второго и запишите <u>в</u> таблицу выбранные цифры под соответствующими буквами.


ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

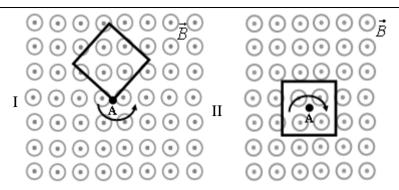
- А) радиус орбиты
- Б) период обращения
- В) кинетическая энергия

- 1) увеличится
- 2) уменьшится
- 3) не изменится
- 25. В некоторый момент времени скорость электрона , движущегося в магнитном поле, направлена вдоль оси x (см. рисунок). Как направлен вектор магнитной индукции , если в этот момент сила Лоренца, действующая на электрон, направлена вдоль оси y?

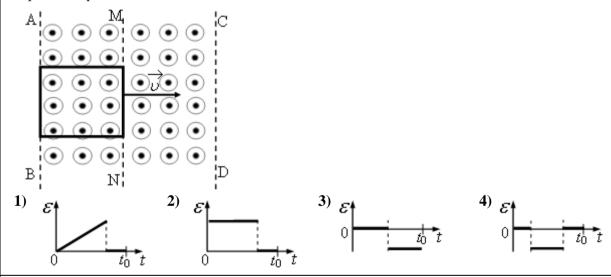
- 1) _{к нам} О
- **2**) от нас ⊗
- 3) в отрицательном направлении оси $x \leftarrow$
- 4) в положительном направлении оси $x \rightarrow$
- 26. Протон движется в однородном магнитном поле со скоростью , направленной перпендикулярно вектору магнитной индукции (см. рисунок). Как направлена сила Лоренца, действующая на протон?



- 1) _{BBepx ↑}
- **2**) _{влево} ←
- 3) к нам ⊙
- **4**) от нас ⊗
- 27. . Радиусы окружностей R_{α} и R_p , по которым движутся α -частица и протон ($m_{\alpha}=4m_p$; $q_{\alpha}=2q_p$), влетевшие в однородное магнитное поле перпендикулярно вектору магнитной индукции с одной и той же скоростью, соотносятся как
- 1) $R_{\alpha} = 2R_p$
- $2) \quad R_{\alpha} = 4R_{p}$
- 3) $R_{\alpha} = R_p/2$
- **4)** $R_{\alpha} = R_{p}/4$
- 28. Заряженная частица движется в однородном магнитном поле по окружности радиусом $2 \cdot 10^{-3}$ м. Сила, действующая на частицу со стороны магнитного поля, равна $1,6 \cdot 10^{-13}$ Н. Какова кинетическая энергия движущейся частицы?


- **1**) 100 3B
- **2**) 1000 эB
- 3) $3.2 \cdot 10^2 \text{ } \text{ } \text{3}$
- **4)** $1,6^{\circ}10^{3}$ 9B
- 29. Заряженная частица движется в однородном магнитном поле по окружности радиусом 10^{-3} м. Сила, действующая на частицу со стороны магнитного поля, равна $3,2\cdot10^{-13}$ Н. Какова кинетическая энергия движущейся частицы?
 - **1**) 100 **B**
 - **2**) 1000 эB
 - 3) $3.2 \cdot 10^2 \text{ } \text{ } 3B$
- **4)** $1.6^{\circ}10^{3}$ 3° B
- 30. Ион, заряд которого равен элементарному заряду, движется в однородном магнитном поле с индукцией $B=0.15~{\rm Tn}$ в плоскости, перпендикулярной . Радиус дуги, по которой движется ион, равен 10^{-3} м. Каков импульс иона?
- 1) $1,6.10^{-19} \text{kg} \cdot \text{m/c}$
- **2)** $12 \cdot 10^{-19} \text{kg} \cdot \text{m/c}$
- 3) $24 \cdot 10^{-24} \text{KT} \cdot \text{M/c}$
- **4)** $36 \cdot 10^{-24} \text{K} \cdot \text{M/c}$
- 3.4 ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ
- 3.4.1 Поток вектора магнитной индукции: $\Phi = B_n S = BS \cos \alpha$

1. Контур ABCD находится в однородном магнитном поле, линии индукции которого направлены перпендикулярно плоскости чертежа от наблюдателя (см. рисунок, вид сверху). Магнитный поток через контур будет меняться, если контур



- 1) движется в направлении от наблюдателя
- 2) движется в направлении к наблюдателю
- 3) поворачивается вокруг стороны АВ
- 4) движется в плоскости рисунка
- 2. На рисунке показаны два способа вращения рамки в однородном магнитном поле, линии индукции которого идут из плоскости чертежа. Вращение происходит вокруг точки А в плоскости рисунка.

ЭДС индукции в рамке

- 1) возникает в обоих случаях
- 2) не возникает ни в одном из случаев
- 3) возникает только в первом случае
- 4) возникает только во втором случае
- 3. В некоторой области пространства, ограниченной плоскостями AB и CD, создано однородное магнитное поле. Металлическая квадратная рамка движется с постоянной скоростью, направленной вдоль плоскости рамки и перпендикулярно его силовым линиям. На каком из графиков правильно показана зависимость от времени ЭДС индукции в рамке, если в начальный момент времени рамка начинает пересекать линию MN (см. рисунок), а в момент времени t_0 задней стороной пересекает линию CD?

- 3.4.2 Явление электромагнитной индукции. ЭДС индукции.
 - 1. Какой из перечисленных ниже процессов объясняется явлением электромагнитной индукции?
 - 1) самопроизвольный распад ядер
 - 2) взаимное отталкивание двух параллельных проводников с током, по которым токи протекают в противоположных направлениях
 - 3) возникновение тока в металлической рамке, находящейся в постоянном магнитном поле, при изменении формы рамки
 - 4) отклонение магнитной стрелки вблизи проводника с током
 - 2. Учитель продемонстрировал опыт по наблюдению напряжения, возникающего в катушке при пролёте через неё магнита (рис. 1). Напряжение с катушки поступало в компьютерную измерительную систему и отображалось на мониторе (рис. 2).

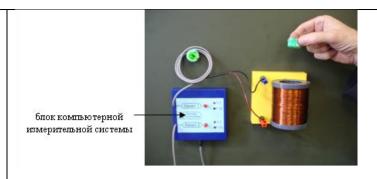
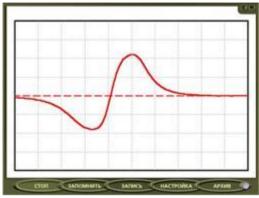
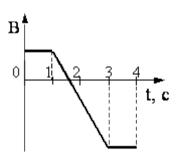
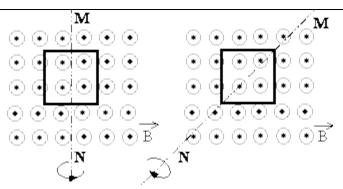
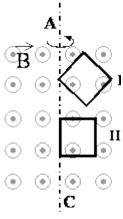


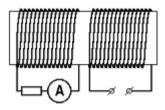
Рис. 1

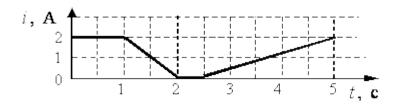




Рис. 2 Что исследовалось в опыте?

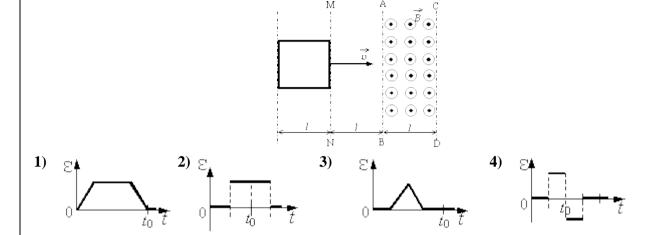
- 1) зависимость направления индукционного тока от изменения магнитного потока
- 2) зависимость силы Ампера от силы тока
- 3) возникновение магнитного поля при изменении электрического поля
- 4) зависимость ЭДС самоиндукции поля от изменения направления электрического тока
- 3. Укажите устройство, в котором используется явление возникновения тока при движении провод магнитном поле.
- 1) электромагнит
- 2) электродвигатель
- 3) электрогенератор
- 4) амперметр
- 4. Один раз полосовой магнит падает сквозь неподвижное металлическое кольцо южным полюсом второй раз северным полюсом вниз. Ток в кольце
- 1) возникает в обоих случаях
- 2) не возникает ни в одном из случаев
- 3) возникает только в первом случае
- 4) возникает только во втором случае
- 5. Один раз металлическое кольцо падает на стоящий вертикально полосовой магнит так, что наде него, второй раз так, что пролетает мимо него. Плоскость кольца в обоих случаях горизонтальна. Кольце
- 1) возникает в обоих случаях
- 2) не возникает ни в одном из случаев
- 3) возникает только в первом случае
- 4) возникает только во втором случае


- 6. Какой процесс объясняется явлением электромагнитной индукции?
 - 1) отклонение магнитной стрелки вблизи проводника с током
- 2) взаимодействие двух проводов с током
- 3) появление тока в замкнутой катушке при опускании в нее постоянного магнита
- 4) возникновение силы, действующей на проводник с током в магнитном поле
- 7. Основное назначение электрогенератора заключается в преобразовании
 - 1) механической энергии в электрическую энергию
- 2) электрической энергии в механическую энергию
- 3) различных видов энергии в механическую энергию
- 4) механической энергии в различные виды энергии
- 8. В основе работы электрогенератора на ГЭС лежит
- 1) действие магнитного поля на проводник с электрическим током
- 2) явление электромагнитной индукции
- 3) явление самоиндукции
- 4) действие электрического поля на электрический заряд
- 9. Виток провода находится в магнитном поле, перпендикулярном плоскости витка, и своими концами замкнут на амперметр. Магнитная индукция поля меняется с течением времени согласно графику на рисунке. В какой промежуток времени амперметр покажет наличие электрического тока в витке?


- 1) or 0 c do 1 c
- 2) от 1 с до 3 с
- 3) от 3 с до 4 с
- 4) во все промежутки времени от 0 с до 4 с
- 10. На рисунке показаны два способа вращения проволочной рамки в однородном магнитном поле, линии индукции которого идут из плоскости чертежа. Вращение происходит вокруг оси MN. Ток в рамке


- 1) существует в обоих случаях
- 2) не существует ни в одном из случаев
- 3) существует только в первом случае
- 4) существует только во втором случае
- 11. В однородном магнитном поле вокруг оси AC с одинаковой частотой вращаются две одинаковые проводящие рамки (см. рисунок). Отношение амплитудных значений ЭДС индукции —, генерируемых в рамках I и II, равно

- **1**) 1:4
- **2**) 1:2
- **3**) 1:1
- **4**) 2:1
- 12. На железный сердечник надеты две катушки, как показано на рисунке.


По правой катушке пропускают ток, который меняется согласно приведенному графику.

В какие промежутки времени амперметр покажет наличие тока в левой катушке?

- 1) от 1 с до 2 с и от 2,5 с до 5 с
- **2**) только от 1 с до 2 с

- 3) от 0 с до 1 с и от 2 с до 2,5 с
- **4**) только от 2,5 с до 5 с
- 13. В некоторой области пространства, ограниченной плоскостями AB и CD, создано однородное магнитное поле. Металлическая квадратная рамка движется с постоянной скоростью, направленной вдоль плоскости рамки и перпендикулярно линиям индукции поля. На каком из графиков правильно показана зависимость от времени ЭДС индукции в рамке, если в начальный момент времени рамка начинает пересекать плоскость MN (см. рисунок), а в момент времени t₀ касается передней стороной линии CD?

- 14. Укажите устройство, в котором используется явление возникновения тока при движении проводника в магнитном поле.
- 1) электромагнит
- 2) электродвигатель
- 3) электрогенератор
- 4) амперметр
- 15. С использованием основного закона электромагнитной индукции (—) можно объяснить
- 1) взаимодействие двух параллельных проводов, по которым идет ток
- 2) отклонение магнитной стрелки, расположенной вблизи проводника с током параллельно ему
- 3) возникновение электрического тока в замкнутой катушке при увеличении силы тока в другой катушке, находящейся рядом с ней
- 4) возникновение силы, действующей на проводник с током в магнитном поле
- 16. При вращении в однородном магнитном поле плоскости металлического кольца с периодом T вокруг оси, перпендикулярной линиям поля, максимальная сила индукционного тока, возникающего в кольце, равна I_1 . Чему будет равна максимальная сила индукционного тока I_2 в этом кольце при уменьшении периода в 2 раза?
- **1**) *I*₂=2*I*₁
- **2**) $I_2 = I_1$
- 3) $I_2=0.5I_1$
- **4**) $I_2 = 4I_1$

17. При вращении плоскости металлического кольца в однородном магнитном поле вокруг оси, перпендикулярной линиям поля, максимальная сила индукционного тока, возникающего в кольце, равна I_1 . Чему будет равна максимальная сила индукционного тока I_2 в этом кольце при увеличении скорости его вращения в 2 раза?

1)
$$I_2 = 2I_1$$

2)
$$I_2 = I_1$$

3)
$$I_2 = 0.5I_1$$
 4) $I_2 = 4I_1$

4)
$$I_2 = 4I_1$$

18. При вращении в однородном магнитном поле плоскости металлического кольца из тонкой проволоки вокруг оси, перпендикулярной линиям поля, максимальная сила индукционного тока, возникающего в кольце, равна I_1 . Чему будет равна максимальная сила индукционного тока I_2 в этом кольце при уменьшении скорости вращения кольца в 2 раза?

1)
$$I_2 = 2I_1$$

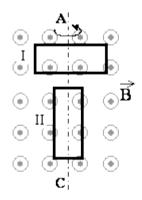
2)
$$I_2 = I_1$$

3)
$$I_2 = 0.5I_1$$

4)
$$I_2 = 4I_1$$

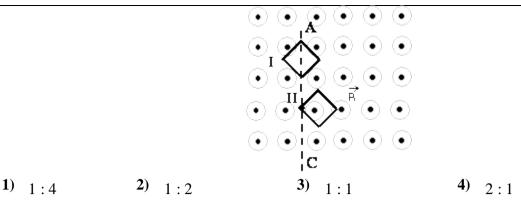
19. При вращении в магнитном поле металлического кольца максимальная сила индукционного тока, возникающего в нем, равна I₁. Чему будет равна максимальная сила индукционного тока I₂ в этом кольце при увеличении скорости изменения магнитного потока, пронизывающего кольцо, в 2 раза?

1)
$$I_2 = 2I_1$$

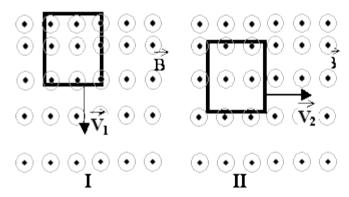

2)
$$I_2 = I_1$$

3)
$$I_2 = 0.5I_1$$

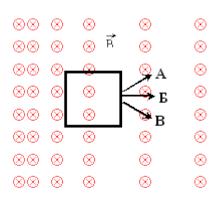
4)
$$I_2 = 4I_1$$


Закон электромагнитной индукции Фарадея: 3.4.3

> 1. В однородном магнитном поле вокруг оси АС с одинаковой частотой вращаются две одинаковые рамки (см. рисунок). Отношение — амплитудных значений ЭДС индукции, генерируемых в рамках I и II, равно



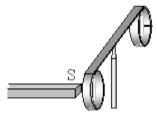
- 1) 1:4
- 2) 1 · 2
- 3) 1 : 1
- **4**) 2:1

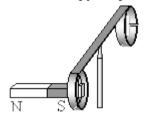

2. В однородном магнитном поле вокруг оси АС с одинаковой частотой вращаются две рамки (рис.) Отношение — амплитудных значений ЭДС индукции, генерируемых в рамках I и II, равно

3. Проволочная рамка движется в неоднородном магнитном поле с силовыми линиями, выходящими из плоскости листа, в случае I со скоростью , в случае II со скоростью (см. рисунок). Плоскость ее остается перпендикулярной линиям вектора магнитной индукции . В каком случае возникает ток в рамке?

- 1) только в случае І
- 2) только в случае II
- 3) в обоих случаях
- 4) ни в одном из случаев
- 4. Проволочная рамка движется в неоднородном магнитном поле, силовые линии которого входят в плоскость листа. Плоскость ее остается перпендикулярной линиям вектора магнитной индукции (см. рисунок). При движении рамки в ней возникает электрический ток. С каким из указанных на рисунке направлений может совпадать скорость рамки?

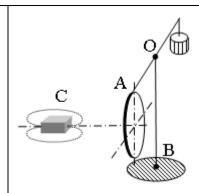
- **1**) _{только с А}
- **2**) только с Б
- 3) только с В
- 4) с любым из указанных направлений
- 5. Напряжение на концах первичной обмотки трансформатора 220 В, сила тока в ней 1 А.


	ояжение на кон официенте поле						ка во вторичной обмотке пр		
1 -	0,1 A		1 A		10 A	4)	100 A		
Нап	апряжение на вряжение на консфирматора?		-			· ·	сила тока в ней 1 А. А. Каков КПД		
1)	100 %	2)	90 %	3)	80 %	4	9 70 %		
220							нного трансформатора ${ m U_1}$ гке к числу витков во		
1)	10	2)	20	3)	30	4)	40		
пров плос	вода со стороно скости рамки. И	ой кв Індуг	адрата b нахо кция поля рас	одится в од стет за врег	нородном мя t по ли	м магнитном п инейному зако	ная рамка из тонкого поле, перпендикулярном ну от 0 до максимального если b увеличить в 2 раза?		
2)	увеличится в 2	2 раза	ı						
3)	уменьшится в	2 par	за						
4)	увеличится в 4 раза								
пров плос знач	вода со стороно скости рамки. И	ой кв Індуг	адрата b нахо кция поля рас	дится в од стет за врег	нородном мя t по ли	м магнитном п инейному зако	ная рамка из тонкого поле, перпендикулярном ну от 0 до максимального если b в 2 раза уменьшить		
1)	уменьшится в	2 par	aa a						
2)	не изменится								
	увеличится в	4 раза	ı						
4)	уменьшится в								
	Синдукции в пј коростью в о,				движуще	емся	$\vec{l} \uparrow_{\alpha}$		
$ \varepsilon_i $ =	= $Blv\sinlpha$, где	$\alpha - y$	тол между в	екторами	\vec{l} и \vec{v} , е	если $\vec{l} \perp \vec{B}$ и	$\vec{v} \perp \vec{B}$		
перг	пендикулярно го тивлением R коростью $v = 1$	лоск = 10	ости рисунка Ом и стороно	$l,B=0,1\mathrm{T}$ ой $l=10\mathrm{cm}$	л. Провол и перемет	точную квадра цают в плоско	ости рисунка поступательн		
1	$\frac{\vec{b} \otimes \dots}{\vec{b} \otimes \dots}$			2)					
$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	1 MA		5 mA) 10 mA		D) 20 mA		
перп сопр	отивление кот инка поступате.	плос орой пьно	кости рисунк 10 Ом и длин равномерно с	а с индукт на сторонь с некоторо	цией <i>B</i> = (г 10 см, п й скорост),1 Тл. Квадра еремещают в з гью v. При пог	итное поле, тную проволочную рамку этом поле в плоскости падании рамки в магнитно . Какова скорость		


- 2. При движении проводника в однородном магнитном поле на его концах возникает ЭДС индукции ϵ_1 . Чему станет равной ЭДС индукции ϵ_2 при увеличении скорости движения проводника в 2 раза?
 - 1) $\varepsilon_2 = 2\varepsilon_1$
- 2) $\varepsilon_2 = \varepsilon_1$
- 3) $\varepsilon_2 = 0.5 \ \varepsilon_1$
- 4) $\varepsilon_2 = 4\varepsilon_1$

3.4.5 Правило Ленца.

1. На рисунке запечатлен тот момент демонстрации по проверке правила Ленца, когда все предметы неподвижны. Южный полюс магнита находится вблизи сплошного алюминиевого кольца. Коромысло с алюминиевыми кольцами может свободно вращаться вокруг вертикальной опоры. Если теперь передвинуть магнит вправо, то ближайшее к нему кольцо будет



- 1) оставаться неподвижным
- 2) удаляться от магнита
- 3) совершать колебания
- 4) перемещаться навстречу магниту
- 2. На рисунке изображен момент демонстрационного эксперимента по проверке правила Ленца, когда все предметы неподвижны. Южный полюс магнита находится внутри сплошного металлического кольца, но не касается его. Коромысло с металлическими кольцами может свободно вращаться вокруг вертикальной опоры. При выдвижении магнита из кольца оно будет

- 1) оставаться неподвижным
- 2) двигаться против часовой стрелки
- 3) совершать колебания
- 4) перемещаться вслед за магнитом
- 3. Медное кольцо на горизонтальном коромысле поворачивается вокруг вертикальной оси ОВ под действием движущегося магнита С. Установите соответствие между направлением движения магнита, вращением коромысла с кольцом и направлением индукционного тока в кольце.

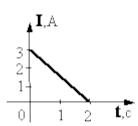
К каждой позиции первого столбца подберите соответствующую позицию второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

МАГНИТ

- А) движется по направлению к кольцу, северный полюс обращён к кольцу
- **Б)** движется к кольцу, к кольцу обращён южный полюс

$\frac{ \mbox{ПОВОРОТ КОРОМЫСЛА И ТОК} }{\mbox{B КОЛЬЦЕ}}$

- 1) коромысло с кольцом поворачивается, отталкиваясь от магнита, ток идёт по часовой стрелке
- 2) коромысло с кольцом поворачивается, отталкиваясь от магнита, ток идёт против часовой стрелки
- 3) коромысло с кольцом поворачивается, притягиваясь к магниту, ток идёт по часовой стрелке
- 4) коромысло с кольцом поворачивается, притягиваясь к магниту, ток идёт против часовой стрелки

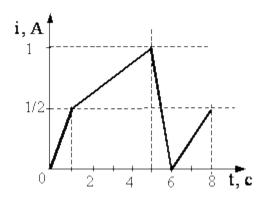

3.4.6 Индуктивность:

$$L = \frac{\Phi}{I}$$
, или $\Phi = LI$

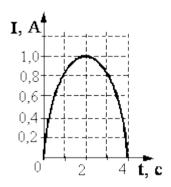
Самоиндукция. ЭДС самоиндукции:

$$\varepsilon_{si} = -L \frac{\Delta I}{\Delta t} \bigg|_{\Delta t \to 0} = -L I_t'$$

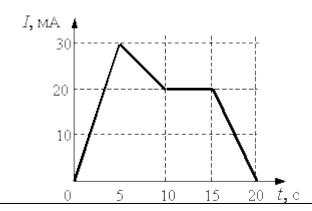
1. На рисунке представлен график изменения силы тока с течением времени в катушке индуктивностью $L=6\ {\rm M}\Gamma$ н. ЭДС самоиндукции равна



- 1) 36 MB
- 2) 9 _{MB}
- 3) 6 MB
- 4) 4 MB
- 2. В проводнике индуктивностью 5 мГн сила тока в течение 0,2 с равномерно возрастает с 2 A до какого конечного значения. При этом в проводнике возникает ЭДС самоиндукции 0,2 В. Определите конечное значение силы тока в проводнике.
- 1) 10 A
- 2) 6 A


3) 4 A

4) 20 A


3. На рисунке приведен график зависимости силы тока і в катушке индуктивности от времени t. Модуль ЭДС самоиндукции принимает **наименьшее** значение в промежутке времени

- 1) (0-1)c
- 2) (1-5) c
- 3) (5-6) c
- 4) (6-8) c
- 4. На рисунке показано изменение силы тока I в катушке индуктивности от времени t. Модуль ЭДС самоиндукции принимает наименьшее значение в промежутках времени

- 1) 0-1 c μ 2 -3 c
- 2) $1-2 c \mu 2-3 c$
- 3) 0-1 с и 3-4 с
- 4) $2-3 c \mu 3-4 c$
- 5. На рисунке приведен график зависимости силы тока от времени в электрической цепи, индуктивность которой 1 м Γ н. Определите модуль среднего значения ЭДС самоиндукции в интервале времени от 10 до 15 с.

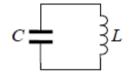
	1)	2 мкВ	2) _{3 MKB}	3) 5	5 мкВ	4) ₀	
		-	пе тока в витке про	волоки индукт	ивностью 2	2·10 ⁻³ Гн создает	гся магнитный поток 12
	мВб						
	1)	$24 \cdot 10^{-6} \text{ A}$	2) _{0,17} A	3) (6 A	4) 24	A
	граф		а в катушке индукти гушке возникает ЭД				емени, как показано на
	2 -						
		/					
	0	0,1 0,2	0,3 t, c				
	1)	1 B	2) 2 B	3)	10 B	4)	0,5 B
3.4.7		± 0	ного поля катушки	с током:			
	W_L =	$=\frac{LI^2}{2}$					
			ктивности подклю я катушки при увел				изменится энергия за?
		уменьшится			1	J J 1	
		увеличится	•				
		увеличится	-				
		•	-				
	")	уменьшится	я в 9 раз				
		•	гь катушки увелич я катушки при этом		силу тока	в ней уменьшил	пи в 2 раза. Энергия
	1)	увеличилас	сь в 8 раз				
	2)	уменьшила	сь в 2 раза				
	3)	уменьшила	сь в 8 раз				
	4)	уменьшила	_				
	3. Во сколько раз надо уменьшить индуктивность катушки, чтобы при неизменном значении силы тока в ней энергия магнитного поля катушки уменьшилась в 4 раза?						
	1)	в 2 раза	2) _{B 4 pa3a}	3) _E	з 8 раз	4) _B 1	6 раз
	. ~	-					

4. Сравните индуктивности L_1 и L_2 двух катушек, если при одинаковой силе тока энергия магнитного поля, создаваемого током в первой катушке, в 9 раз больше, чем энергия магнитного поля, создаваемого током во второй катушке.

1) L_1 в 9 раз больше, чем L_2

2) L_1 в 9 раз меньше, чем L_2

3) L_1 в 3 раза больше, чем L_2

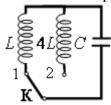

4) L_1 в 3 раза меньше, чем L_2

5. Ч	ерез катушку индуктивности течёт постоянный ток. Как нужно изменить силу тока, чтобы
увел	ичить энергию магнитного поля катушки вдвое?
1)	уменьшить в 2 раза
2)	увеличить в 2 раза
3)	увеличить в 4 раза

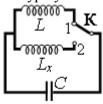
4) увеличить в — раз ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ

3.5.1 Колебательный контур. Свободные электромагнитные колебания в идеальном колебательном контуре:

$$\begin{cases} q(t) = q_{max} \sin(\omega t + \varphi_0) \\ I(t) = q'_t = \omega q_{max} \cos(\omega t + \varphi_0) = I_{max} \cos(\omega t + \varphi_0) \end{cases}$$


Формула Томсона: $T=2\pi\sqrt{LC}$, откуда $\omega=\frac{2\pi}{T}=\frac{1}{\sqrt{LC}}$

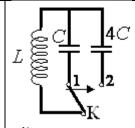
Связь амплитуды заряда конденсатора с амплитудой силы тока в колебательном контуре:


$$q_{max} = \frac{I_{max}}{\omega}$$

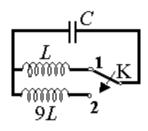
3.5

1. Как изменится период собственных электромагнитных колебаний в контуре (см. рисунок), если ключ К перевести из положения 1 в положение 2?

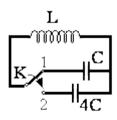
- 1) уменьшится в 4 раза
- 2) уменьшится в 2 раза
- 3) увеличится в 2 раза
- 4) увеличится в 4 раза
- 2. Как изменится частота свободных электромагнитных колебаний в контуре, если воздушный промежуток между пластинами конденсатора заполнить диэлектриком с диэлектрической проницаемостью = 3?
 - увеличится в раза
 - уменьшится в раза
 - 3) увеличится в 3 раза
 - 4) уменьшится в 3 раза
- 3. Какой должна быть индуктивность L_x катушки в контуре (см. рисунок), чтобы при переводе ключа К из положения 1 в положение 2 период собственных электромагнитных колебаний в контуре увеличился в 3 раза?


1) _{9L}

2) _{3L}


3) –*L*

4) _{-I}


4. Как изменится период собственных электромагнитных колебаний в контуре (см. рисунок), если ключ К перевести из положения 1 в положение 2?

- 1) уменьшится в 4 раза
- 2) увеличится в 4 раза
- 3) уменьшится в 2 раза
- 4) увеличится в 2 раза
- 5. Как изменится период собственных электромагнитных колебаний в контуре (см. рисунок), если ключ К перевести из положения 1 в положение 2?

- 1) увеличится в 3 раза
- 2) уменьшится в 3 раза
- 3) увеличится в 9 раз
- 4) уменьшится в 9 раз
- 6. Как изменится частота собственных электромагнитных колебаний в контуре (см. рисунок), если ключ К перевести из положения 1 в положение 2?

- 1) увеличится в 4 раза
- 2) уменьшится в 4 раза
- 3) увеличится в 2 раза
- 4) уменьшится в 2 раза
- 7. Учитель собрал цепь, представленную на рис. 1, соединив катушку с конденсатором. Сначала конденсатор был подключён к источнику напряжения, затем переключатель был переведён в положение 2. Напряжение с катушки индуктивности поступает в компьютерную измерительную систему, и результаты отображаются на мониторе (рис. 2).

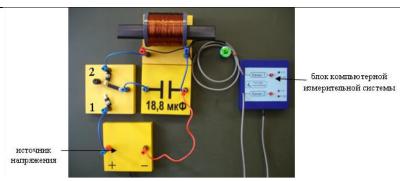


Рис. 1

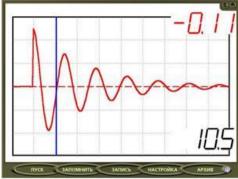
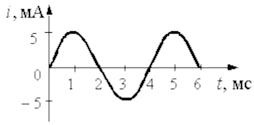


Рис. 2

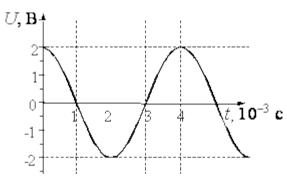
Что исследовалось в опыте?

- 1) явление электромагнитной индукции
- 2) вынужденные электромагнитные колебания
- 3) свободные электромагнитные колебания
- 4) автоколебательный процесс в генераторе
- 8. Колебательный контур состоит из конденсатора емкостью С и катушки индуктивностью L. Как изменится период свободных электромагнитных колебаний в этом контуре, если емкость конденсатора и индуктивность катушки увеличить в 3 раза?
 - 1) увеличится в 3 раза
- 2) не изменится
- 3) уменьшится в 3 раза
- 4) увеличится в 9 раз
- 9. Ёмкость конденсатора в цепи переменного тока равна 50 мкФ. Уравнение изменения напряжения на конденсаторе имеет вид: $U = 60 \sin(500t)$, где все величины выражены в СИ. Найдите амплитуду колебаний силы тока.
- 1) $6.0 \cdot 10^{-6}$ A
- 2) 4,2·10⁻⁴ A
- **3**) _{1,5} A
- 4) $6.0 \cdot 10^8$ A
- 10. Колебательный контур состоит из конденсатора электроемкостью C и катушки индуктивностью L. Как изменится период свободных электромагнитных колебаний в этом контуре, если и электроемкость конденсатора, и индуктивность катушки увеличить в 2 раза?
- 1) не изменится
- 2) увеличится в 4 раза
- 3) уменьшится в 2 раза
- 4) увеличится в 2 раза

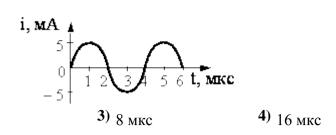

11. В наборе радиодеталей для изготовления простого колебательного контура имеются две катушки с индуктивностями $L_1=1$ мкГн и $L_2=2$ мкГн, а также два конденсатора, емкости которых $C_1=30$ пФ и $C_2=40$ пФ. При каком выборе двух элементов из этого набора частота собственных колебаний контура ν будет наибольшей?

1)
$$L_1 \bowtie C_1$$

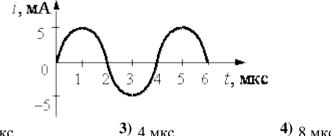
12. В наборе радиодеталей для изготовления простого колебательного контура имеются две катушки с индуктивностями $L_1 = 1$ мк Γ н и $L_2 = 2$ мк Γ н, а также два конденсатора, емкости которых $C_1 = 3$ п Φ и $C_2 = 4$ п Φ . При каком выборе двух элементов из этого набора период собственных колебаний контура T будет наибольшим?


1)
$$L_1 \bowtie C_1$$

13. На рисунке приведен график зависимости силы тока от времени в колебательном контуре с последовательно включенными конденсатором и катушкой, индуктивность которой равна 0,2 Гн. Максимальное значение энергии электрического поля конденсатора равно



- 1) $2,5\cdot10^{-6}$ Дж
- **2**) 5·10⁻⁶ Дж
- **3**) 5·10⁻⁴ Дж
- **4)** 10⁻³ Дж


14. Напряжение на клеммах конденсатора в колебательном контуре меняется с течением времени согласно графику на рисунке. Какое преобразование энергии происходит в контуре в промежутке от $2\cdot 10^{-3}$ с до $3\cdot 10^{-3}$ с?

- 1) энергия магнитного поля катушки уменьшается от максимального значения до 0
- 2) энергия магнитного поля катушки преобразуется в энергию электрического поля конденсатора
- 3) энергия электрического поля конденсатора увеличивается до максимального значения
- 4) энергия электрического поля конденсатора преобразуется в энергию магнитного поля катушки
- 15. На рисунке приведен график зависимости силы тока от времени в колебательном контуре при свободных колебаниях. Если емкость конденсатора увеличить в 4 раза, то период собственных колебаний контура станет равным

16. На рисунке приведен график гармонических колебаний тока в колебательном контуре. Если катушку в этом контуре заменить на другую катушку, индуктивность которой в 4 раза меньше, то период колебаний будет равен

1) _{1 MKC} 2) _{2 MKC} 3) _{4 MKC} 4) _{8 MKC}

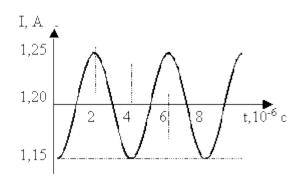
2) 4 MKC

- 17. Колебательный контур состоит из конденсатора электроемкостью C и катушки индуктивностью L. Если емкость конденсатора уменьшить в 2 раза, а индуктивность катушки в 2 раза увеличить, то период свободных электромагнитных колебаний в этом контуре
- 1) не изменится

1) 2 MKC

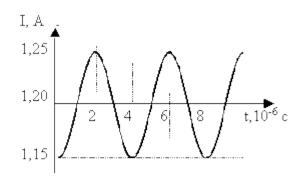
- 2) увеличится в 4 раза
- 3) уменьшится в 2 раза
- 4) увеличится в 2 раза
- 18. В наборе радиодеталей для изготовления простого колебательного контура имеются две катушки с индуктивностями $L_1 = 1$ мк Γ н и $L_2 = 2$ мк Γ н, а также два конденсатора, емкости которых $C_1 = 3$ п Φ и $C_2 = 4$ п Φ . При каком выборе двух элементов из этого набора период собственных колебаний контура T будет наименьшим?

1)
$$L_1 \bowtie C_1$$
 2) $L_2 \bowtie C_2$ 3) $L_2 \bowtie C_1$ 4) $L_1 \bowtie C_2$

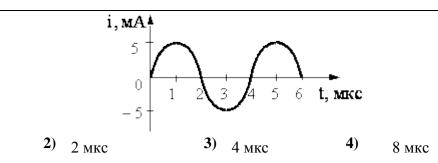

- 19. Колебательный контур состоит из катушки индуктивности и конденсатора. В нём наблюдаются гармонические электромагнитные колебания с периодом $T=5\,\mathrm{mc}$. В начальный момент времени заряд конденсатора максимален и равен . Каков будет заряд конденсатора через $t=2.5\,\mathrm{mc}$
- 1) $_0$ 2) $2 \cdot 10^{-6} \text{K} \pi$ 3) $4 \cdot 10^{-6} \text{K} \pi$ 4) $8 \cdot 10^{-6} \text{K} \pi$
- 20. Колебательный контур состоит из конденсатора ёмкостью C и катушки индуктивностью L. Как изменится период свободных электромагнитных колебаний в этом контуре, если и электроёмкость конденсатора, и индуктивность катушки увеличить в 5 раз?
- 1) увеличится в 5 раз
- 2) не изменится

	уменьшится в 5 раз	
	увеличится в 25 раз	
E 3	В первом опыте конденсатор идеального колебательного контура зарядили до напряж втором опыте при неизменной индуктивности уменьшили ёмкость конденсатора в 2 раздили его до напряжения $4U$. Как изменился период свободных электромагнитных колонтуре?	аза и
	уменьшился в раза	
	уменьшился в 2 раза	
	увеличился в раза	
	увеличился в 2 раза	
3	В первом опыте конденсатор идеального контура зарядили до напряжения U . Во второ уктивность контура уменьшили в 4 раза, а ёмкость конденсатора уменьшили в 2 раза, идили до напряжения $2U$. Как изменилась частота свободных электромагнитных колеб гуре?	НО
	увеличилась в раза	
	увеличилась в раза	
	уменьшилась в раза	
	уменьшилась в раза	
E	В первом опыте конденсатор идеального колебательного контура зарядили до напряж втором опыте индуктивность уменьшили в 4 раза, а тот же конденсатор зарядили до ряжения $2U$. Как изменился период свободных электромагнитных колебаний в контур	
	уменьшился в 2 раза	
	уменьшился в раза	
	увеличился в 2 раза	
	увеличился в раза	
3	В первом опыте конденсатор идеального контура зарядили до напряжения U . Во второте индуктивность контура уменьшили в 4 раза, а ёмкость конденсатора увеличили в 2 идив при этом до — Как изменится частота свободных электромагнитных колебаний в кон	раза,
	уменьшится в раза	
	уменьшится в 2 раза	
	увеличится в раза	
	увеличится в 2 раза	
К 3	В двух идеальных колебательных контурах происходят незатухающие электромагнити ебания. Амплитудное значение силы тока в первом контуре 3 мА. Каково амплитудном нение силы тока во втором контуре, если период колебаний в нем в 3 раза больше, а симальное значение заряда конденсатора в 6 раз больше, чем в первом?	

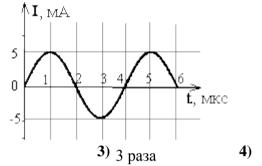
26. В двух идеальных колебательных контурах происходят незатухающие электромагнитные колебания. Максимальное значение заряда конденсатора во втором контуре равно 6 мкКл. Амплитуда колебаний силы тока в первом контуре в 2 раза меньше, а период его колебаний в 3 раза меньше, чем во втором контуре. Определите максимальное значение заряда конденсатора в первом контуре.


- **1**) _{1 мкКл}
- **2**) _{4 мкКл}
- **3**) 6 мкКл
- **4**) 9 мкКл

27. На рисунке показан график колебаний силы тока в колебательном контуре с антенной. Определите длину электромагнитной волны, излучаемой антенной.

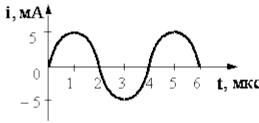


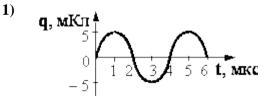
- 1) $1.2 \cdot 10^3 \,\mathrm{M}$
- 2) $0.83 \cdot 10^{-3} \,\mathrm{M}$
- 3) $7.5 \cdot 10^2 \,\mathrm{M}$
- 4) 6.10^2 M

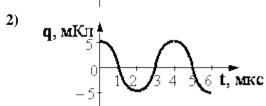

28. На рисунке показан график колебаний силы тока в колебательном контуре с антенной. Определите длину электромагнитной волны, излучаемой антенной.

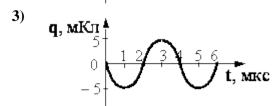
- 1) $1,2\cdot10^3$ M
- 2) $0.83 \cdot 10^{-3} \,\mathrm{M}$
- 3) $7.5 \cdot 10^2 \,\mathrm{M}$
- **4)** $6 \cdot 10^2 \,\mathrm{M}$
- 29. На рисунке приведен график зависимости силы тока от времени в колебательном контуре. Период колебания энергии магнитного поля катушки равен

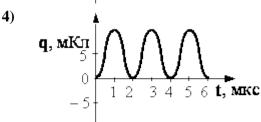
30. На рисунке приведен график зависимости силы тока от времени в колебательном контуре. Сколько раз энергия катушки достигает максимального значения в течение первых 6 мкс после начала отсчета?

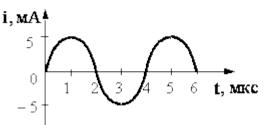

1) _{1 pa3}

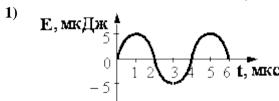

1) _{1 MKC}

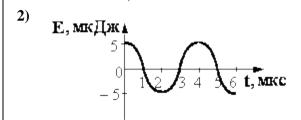

2) _{2 pa3a}

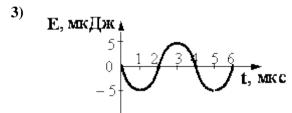

4 раза

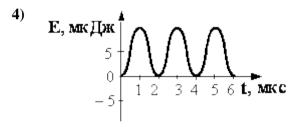

31. На рисунке приведен график зависимости силы тока от времени в колебательном контуре. На каком из графиков правильно показан процесс изменения заряда конденсатора?

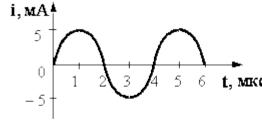


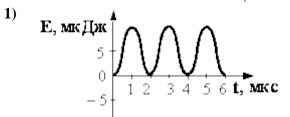


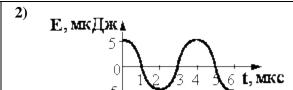


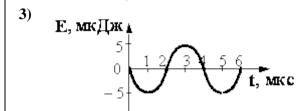


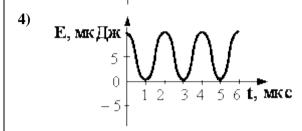

32. На рисунке приведен график зависимости силы тока от времени в колебательном контуре. На каком из графиков правильно показан процесс изменения энергии магнитного поля катушки?

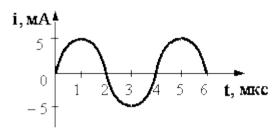


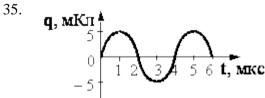


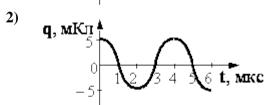


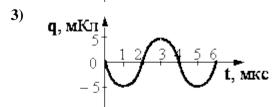


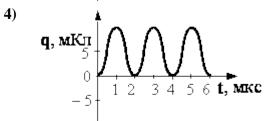

33. На рисунке приведен график зависимости силы тока от времени в колебательном контуре. На каком из графиков правильно показан процесс изменения энергии электрического поля конденсатора?

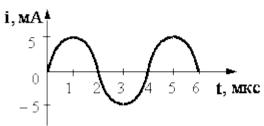


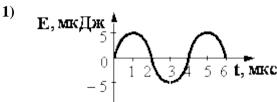


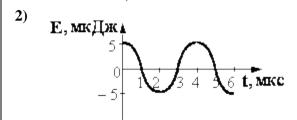


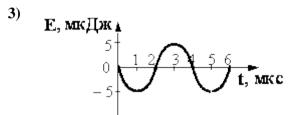


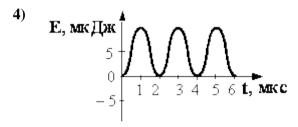

34. На рисунке приведен график зависимости силы тока от времени в колебательном контуре. На каком из графиков правильно показан процесс изменения заряда конденсатора?

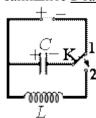


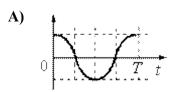




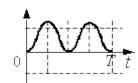



36. На рисунке приведен график зависимости силы тока от времени в колебательном контуре. На каком из графиков правильно показан процесс изменения энергии магнитного поля катушки?

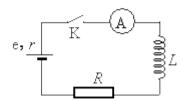




37. Конденсатор колебательного контура подключен к источнику постоянного напряжения (см. рисунок). Графики А и Б представляют изменения физических величин, характеризующих колебания в контуре после переведения переключателя К в положение 2. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.


<u>ГРАФИКИ</u>

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ


- 1) заряд левой обкладки конденсатора
- **2**) энергия электрического поля конденсатора

Б)

- 3) сила тока в катушке
- 4) энергия магнитного поля катушки

38. В схеме, показанной на рисунке, ключ K замыкают в момент времени t=0. Показания амперметра в последовательные моменты времени приведены в таблице.

t, MC	0	50	100	150	200	250	300	400	500	600	700
<i>I</i> , мА	()	23	38	47	7/	~~	57	59	59	60	60

Определите ЭДС источника, если сопротивление резистора R = 100 Ом. Сопротивлением проводов и амперметра, активным сопротивлением катушки индуктивности и внутренним сопротивлением источника пренебречь.

- 1) 1,5 B
- 2) 3 B
- 3) 6 B
- 4) 7 B

39.В идеальном колебательном контуре происходят свободные электромагнитные колебания. В таблице показано, как изменялся заряд конденсатора в колебательном контуре с течением времени.

t , 10^{-6} c	0	1	2	3	4	5	6	7	8	9
q , 10^{-9} Кл	2	1,42	0	-1,42	-2	-1,42	0	1,42	2	1,42

Вычислите по этим данным максимальное значение силы тока в катушке. Ответ выразите в мА, округлив его до десятых.

40. В таблице показано, как менялся ток в катушке колебательного контура при свободных колебаниях. Вычислите по этим данным энергию конденсатора в момент времени $5^{\cdot}10^{-6}\,\mathrm{c}$, если индуктивность катушки 4 мГн.

t , 10^{-6} c	0	1	2	3	4	5	6	7	8	9
$I, 10^{-3} A$	4	2,83	0	-2,83	-4	-2,83	0	2,83	4	2,83

- **1**) 3,2·10⁻⁸ Дж
- **2**) 5,3·10⁻⁸ Дж
- **3**) 1,6·10⁻⁸ Дж
- **4)** 1,2·10⁻⁸ Дж

41. В таблице показано, как менялся ток в катушке идеального колебательного контура при свободных колебаниях. Вычислите по этим данным максимальный заряд конденсатора.

	t , 10^{-6} c	0	1	2	3	4	5	6	7	8	9
--	-------------------	---	---	---	---	---	---	---	---	---	---

	$I, 10^{-3} A$	4	2,83	0	-2,83	-4	-2,83	0	2,83	4	2,83	
--	----------------	---	------	---	-------	----	-------	---	------	---	------	--

- **1**) 7,9·10⁻⁸ Кл
- **2**) 1.3·10⁻⁸ Кл
- **3**) 9,4·10⁻⁹ Кл
- **4**) 5,1·10⁻⁹ Кл

Ответ: 4

42. В таблице показано, как менялся ток в катушке колебательного контура. Вычислите по этим данным максимальную энергию конденсатора, если индуктивность катушки 4 мГн.

t, 10 ⁻⁶ c	0	1	2	3	4	5	6	7	8	9
$I, 10^{-3} \text{ A}$	4	2,83	0	-2,83	-4	-2,83	0	2,83	4	2,83

- **1**) 3,2·10⁻⁸ Дж
- **2**) 5,3·10⁻⁸ Дж
- **3**) 7,6·10⁻⁸ Дж
- **4**) 9,2·10⁻⁸ Дж
- 43. При настройке контура радиопередатчика его индуктивность увеличили. Как при этом изменятся следующие три величины: период колебаний тока в контуре, частота излучаемых волн, длина волны излучения?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится
- 2) уменьшится
- 3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Период колебаний тока в контуре	Частота излучаемых волнДлина волны излучения

44. При настройке колебательного контура радиопередатчика его индуктивность уменьшили. Как при этом изменятся следующие три величины: период колебаний тока в контуре, частота излучаемых волн, длина волны излучения?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится
- 2) уменьшится
- 3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Период колебаний тока	Частота излучаемых волн	Длина волны излучения	
в контуре			

45. В таблице показано, как менялся ток в катушке колебательного контура. Вычислите по этим данным энергию катушки в момент времени $5 \cdot 10^{-6}$ с, если емкость конденсатора 405 пФ. Ответ выразите в наноджоулях (нДж), округлив до целых.

t, 10 ⁻⁶ c	0	1	2	3	4	5	6	7	8	9
<i>I</i> , 10 ⁻³ A	4	2,83	0	-2,83	-4	-2,83	0	2,83	4	2,83

46. При настройке колебательного контура генератора, задающего частоту радиопередатчика электроёмкость его конденсатора уменьшили. Как при этом изменятся следующие три величины: период колебаний тока в контуре, частота излучаемых волн, длина волны излучения?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится
- 2) уменьшится
- 3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Период колебаний тока в контуре	Частота излучаемых волн	Длина волны излучения

47. При настройке колебательного контура генератора, задающего частоту радиопередатчика, его индуктивность увеличили. Как при этом изменятся следующие три величины: частота колебаний заряда в контуре, период излучаемых волн, длина волны излучения?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится
- 2) уменьшится
- 3) не изменится

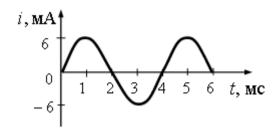
Запишите <u>в таблицу</u> выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Частота колебаний заряда в контуре	Период излучаемых волн	Длина волны излучения

48. При настройке колебательного контура генератора, задающего частоту радиопередатчика, его индуктивность уменьшили. Как при этом изменятся следующие три величины: период колебаний тока в контуре, частота излучаемых волн, длина волны излучения?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится
- 2) уменьшится
- 3) не изменится


Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Период колебаний тока в контуре	Частота излучаемых волн	Длина волны излучения

3.5.2 Закон сохранения энергии в колебательном контуре:

	CU^2	LI^2	CU_{max}^2	$_{-}LI_{max}^{2}$	= const
l	2	7 2			– const

1. На рисунке приведён график зависимости силы тока от времени в колебательном контуре, образованном конденсатором и катушкой, индуктивность которой равна 0,3 Гн. Максимальное значение энергии электрического поля конденсатора равно

- **1**) 1,8·10⁻⁶ Дж
- **2**) 5,4·10⁻⁶ Дж
- **3**) _{1,08} ·10⁻⁴ Дж
- **4**) 3·10⁻³ Дж

2. Колебательный контур состоит из катушки индуктивности и конденсатора. В нём наблюдаются гармонические электромагнитные колебания с периодом T=6 мкс. Максимальный заряд одной из обкладок конденсатора при этих колебаниях равен $4\cdot10^{-6}$ Кл. Каким будет модуль заряда этой обкладки в момент времени t=1,5 мкс, если в начальный момент времени её заряд равен нулю?

- **1**) 0
- **2**) 2·10⁻⁶Кл
- **3**) 4·10⁻⁶Кл
- **4**) 8·10⁻⁶Кл

3. В таблице показано, как менялся ток в катушке колебательного контура. Вычислите по этим данным ёмкость конденсатора, если индуктивность катушки равна 4 мГн.

t, 10 ⁻⁶ c	0	1	2	3	4	5	6	7	8	9
$I, 10^{-3} \text{ A}$	4	2,83	0	-2,83	-4	-2,83	0	2,83	4	2,83

- 1) $2.10^{-10}\Phi$
- **2**) $4.10^{-10} \Phi$
- **3**) 6·10⁻¹⁰ Φ
- **4**) 8·10⁻¹⁰ Φ

3.5.3 Вынужденные электромагнитные колебания. Резонанс.

- 1. На какую длину волны нужно настроить радиоприемник, чтобы слушать радиостанцию «Наше радио», которая вещает на частоте 101,7 МГц?
- 1) 2,950 KM
- 2) 2,950 M
- **3**) 2,950 дм
- **4)** 2,950 cm

2. В таблице показано, как изменялся заряд конденсатора с течением времени в колебательном контуре, подключенном к источнику переменного тока.

t , 10 ⁻⁶ c	0	1	2	3	4	5	6	7	8	9
q , 10 ⁻⁹ Кл	2	1,42	0	-1,42	-2	-1,42	0	1,42	2	1,42

При какой индуктивности катушки в контуре наступит резонанс, если емкость конденсатора равна $50~\text{n}\Phi$?

- 47,6·10³ ΓH
 31 ΓH
- 3) $3,2\cdot10^{-2} \Gamma_{\rm H}$
- **4)** $8.10^{-3} \Gamma_{\rm H}$
- 3. Электрический колебательный контур радиоприемника настроен на длину волны λ . Как изменятся период колебаний в контуре, их частота и соответствующая им длина волны, если площадь пластин конденсатора уменьшить?

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите <u>в таблицу</u> выбранные цифры под соответствующими буквами.

Получившуюся последовательность цифр перенесите в бланк ответов (без пробелов и какихлибо символов).

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ИХ ИЗМЕНЕНИЕ

А) период колебаний

1) не изменится

Б) частота

2) уменьшится

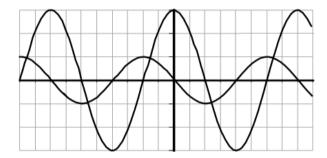
В) длина волны

- 3) увеличится
- 4. При настройке колебательного контура генератора, задающего частоту радиопередатчика, электроёмкость его конденсатора увеличили. Как при этом изменятся следующие три величины: частота колебаний силы тока в контуре, период излучаемых волн, длина волны излучения?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится
- 2) уменьшится
- 3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Частота колебаний силы тока в контуре	Период излучаемых волн	Длина волны излучения

- 3.5.4 Переменный ток. Производство, передача и потребление электрической энергии.
 - 1. Последовательно соединены конденсатор, катушка индуктивности и резистор. Если при неизменной частоте и амплитуде напряжения на концах цепи увеличивать емкость конденсатора от 0 до ∞ , то амплитуда тока в цепи будет
 - 1) монотонно убывать
 - 2) монотонно возрастать
 - 3) сначала возрастать, затем убывать
 - 4) сначала убывать, затем возрастать
 - 2. Последовательно соединены конденсатор, катушка индуктивности и резистор. Если при неизменной частоте и амплитуде вынужденных колебаний напряжения на концах цепи уменьшать индуктивность катушки от ∞ до 0, то амплитуда колебаний силы тока в цепи будет

- 1) монотонно убывать
- 2) монотонно возрастать
- 3) сначала возрастать, затем убывать
- 4) сначала убывать, затем возрастать
- 3. Емкость конденсатора, включенного в цепь переменного тока, равна 6 мкФ. Уравнение колебаний напряжения на конденсаторе имеет вид: $U = 50\cos(1\cdot10^3t)$, где все величины выражены в СИ. Найдите амплитуду силы тока.
- 1) 0.003 A
- **2**) 0,3 A
- **3**) 0,58 A
- **4**) 50 A
- 4. Колебания силы тока в цепи, содержащей идеальную катушку, описываются уравнением:
 - , где все величины выражены в СИ. Индуктивность катушки равна 0,5 Гн.

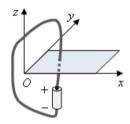
Определите амплитуду напряжения на катушке.

- 1) _{10 B}
- **2**) 5π B
- 3) 0.5π B
- **4**) 0,5 B
- 5. На рисунке приведены осциллограммы напряжений на двух различных элементах электрической цепи переменного тока.

Колебания этих напряжений имеют

- 1) одинаковые периоды, но различные амплитуды
- 2) различные периоды и различные амплитуды
- 3) различные периоды, но одинаковые амплитуды
- 4) одинаковые периоды и одинаковые амплитуды
- 6. Ёмкость конденсатора в цепи переменного тока равна 30 мк Φ . Зависимость напряжения на конденсаторе от времени имеет вид: $U = 30 \sin(500t)$, где все величины выражены в СИ. Найдите амплитуду колебаний силы тока.
- 1) $9.0\cdot10^{-6}$ A
- 2) 4,5·10⁻⁴ A
- **3**) 0,45 A
- 4) $1.5^{\cdot}10^{8}$ A
- 7. Заряженная частица излучает электромагнитные волны в вакууме
- 1) только при движении с ускорением
- 2) только при движении с постоянной скоростью
- 3) только в состоянии покоя
- 4) в состоянии покоя или при движении с постоянной скоростью

8. C	огласно теории Максвелла, электромагнитные волны излучаются зарядом
1)	только при равномерном движении заряда по прямой
2)	только при гармонических колебаниях заряда
3)	только при равномерном движении заряда по окружности
4)	при любом ускоренном движении заряда в инерциальной системе отсчета
9. П	ри прохождении электромагнитных волн в воздухе происходят колебания
1)	молекул воздуха
2)	плотности воздуха
3)	напряженности электрического и индукции магнитного полей
4)	концентрации кислорода
кол	В электромагнитной волне, распространяющейся в вакууме со скоростью , происходят ебания векторов напряженности электрического поля и индукции магнитного поля . При к колебаниях векторы , , имеют взаимную ориентацию:
3)	
4)	
пол:	Явлением, доказывающим, что в электромагнитной волне вектор напряженности электрического я колеблется в направлении, перпендикулярном направлению распространения стромагнитной волны, является
1)	интерференция
2)	отражение
3)	поляризация
4)	дифракция
	Укажите сочетание тех параметров электромагнитной волны, которые изменяются при еходе волны из воздуха в стекло.
1)	скорость и длина волны
2)	частота и скорость
3)	длина волны и частота
4)	амплитуда и частота
	Какое явление характерно для электромагнитных волн, но не является общим свойством на природы?
1)	поляризация
2)	преломление
3)	дифракция
4)	интерференция
14.	Электромагнитные излучения волн различной длины отличаются друг от друга тем, что
1)	имеют разную частоту
2)	с различной скоростью распространяются в вакууме
3)	одни являются продольными, другие – поперечными


	4) одни обладают способностью к дифракции, другие нет
3.5.5	Свойства электромагнитных волн. Взаимная ориентация векторов в электромагнитной волне в
	вакууме:
	1. В плоской электромагнитной волне, распространяющейся вдоль оси ОZ, вектор
	напряжённости электрического поля направлен параллельно оси ОУ. Как ориентирован вектор

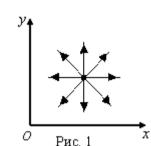
этой волны?

1) параллельно оси ОХ

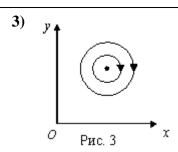
магнитной индукции

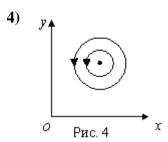
- 2) параллельно оси ОУ
- 3) параллельно оси ОХ
- **4**) = 0
- 2. При подключении проводника к полюсам гальванического элемента на поверхности проводника появляются заряды: положительные вблизи положительного полюса, отрицательные вблизи отрицательного полюса и возникает электрический ток. Заряды на поверхности проводника создают в пространстве электрическое поле, а ток магнитное поле. Проводник, подключённый к гальваническому элементу, проходит через отверстие в доске. На рисунках 1-4 при помощи силовых линий (линий поля) изображены электрическое и магнитное поля, создаваемые проводником (вид сверху).

Установите соответствие между видами поля и рисунками, изображающими силовые линии.

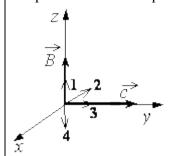

1)


K каждой позиции первого столбца подберите соответствующую позицию второго и запишите $\underline{\mathbf{B}}$ таблицу выбранные цифры.


виды поля


- **А)** электрическое поле
- **Б)** магнитное поле

<u>ИЗОБРАЖЕНИЯ СИЛОВЫХ ЛИНИЙ</u>



- 3.Заряженная частица излучает электромагнитные волны в вакууме
- 1) только при движении с ускорением
- 2) только при движении с постоянной скоростью
- 3) только в состоянии покоя
- 4) в состоянии покоя или при движении с постоянной скоростью
- 4. Согласно теории Максвелла, электромагнитные волны излучаются зарядом
 - 1) только при равномерном движении заряда по прямой
 - 2) только при гармонических колебаниях заряда
 - 3) только при равномерном движении заряда по окружности
- 4) при любом ускоренном движении заряда в инерциальной системе отсчета
- 5. При прохождении электромагнитных волн в воздухе происходят колебания
- 1) молекул воздуха
- 2) плотности воздуха
- 3) напряженности электрического и индукции магнитного полей
- 4) концентрации кислорода
- 6. В электромагнитной волне, распространяющейся в вакууме со скоростью , происходят колеба векторов напряженности электрического поля и индукции магнитного поля . При этих колеба векторы , , имеют взаимную ориентацию:
- 1) \perp , \parallel , \parallel
- \perp , \perp , \perp
- 3) | | | |
- 4) || , || , ||
- 7. Явлением, доказывающим, что в электромагнитной волне вектор напряженности электрического по колеблется в направлении, перпендикулярном направлению распространения электромагнитной волны
- 1) интерференция
- 2) отражение

3)	поляризация
4)	дифракция
	кажите сочетание тех параметров электромагнитной волны, которые изменяются при переходе
	уха в стекло.
1)	скорость и длина волны
2)	частота и скорость
3)	длина волны и частота
4)	амплитуда и частота
	акое явление характерно для электромагнитных волн, но не является общим свойством волн лю роды?
при ₁	поляризация
2)	преломление
3)	дифракция
4)	••
	интерференция
10. 3	Электромагнитные излучения волн различной длины отличаются друг от друга тем, что имеют разную частоту
2)	с различной скоростью распространяются в вакууме
3)	
4)	одни являются продольными, другие – поперечными
-	одни обладают способностью к дифракции, другие нет
	Гараллельно, какой координатной оси «бежит» плоская электромагнитная волна, если в оторый момент времени в точке с координатами (x, y, z) напряженность электрического
поля	
1)	параллельно оси Х
2)	параллельно оси Ү
3)	параллельно оси Z
4)	такая волна невозможна
12. I	Сакое утверждение верно?
2. B	теории электромагнитного поля Максвелла
А. п	еременное электрическое поле порождает вихревое магнитное поле.
Б. п	еременное магнитное поле порождает вихревое электрическое поле.
1)	только А
2)	только Б
3)	и А, и Б
4)	ни А, ни Б
13. (Согласно теории Максвелла, заряженная частица излучает электромагнитные волны в вакууме
1)	только при равномерном движении по прямой в инерциальной системе отсчета (ИСО)
2)	только при гармонических колебаниях в ИСО
3)	только при равномерном движении по окружности в ИСО

- 4) при любом ускоренном движении в ИСО
- 14. На рисунке в декартовой системе координат представлены вектор индукции магнитного поля в электромагнитной волне и вектор скорости ее распространения. Направление вектора напряженности электрического поля в волне совпадает со стрелкой

- **1**) 1
- 2) 2

3) 3

- **4**) ₄
- 15. Плоская электромагнитная волна распространяется вдоль оси Ox в положительном направлении. Какова разность фаз колебаний индукции магнитного поля в начале координат и в точке M с координатами x = 3 м, y = 2 м, z = 1 м, если длина волны равна 4 м?
- 1) $\frac{1}{2}\pi$
- **2**) π

3) $\frac{3}{2}\pi$

- **4**) 2π
- 16. В электромагнитной волне, распространяющейся со скоростью , происходят колебания векторов напряжённости электрического поля и индукции магнитного поля . При этих колебаниях векторы , , имеют взаимную ориентацию:
- 1) | |
- \perp , \perp , \parallel
- $^{3)}$ $_{\perp}$, $_{\perp}$, $_{\parallel}$
- 4) \(\psi\), \(\psi\), \(\psi\)
- 17. Какой объект, согласно классической электродинамике, не излучает электромагнитных волн?
- 1) ускоренно движущийся заряд
- 2) электромагнит, подключённый к генератору переменного тока
- 3) линия электропередачи
- 4) покоящийся электромагнит, подключённый к аккумулятору
- 3.5.6 Шкала электромагнитных волн. Применение электромагнитных волн в технике и быту.
 - 1. Выберите среди электромагнитных волн, излучаемых Солнцем, волны с минимальной частотой.
 - 1) инфракрасное излучение
 - 2) ультрафиолетовое излучение
 - 3) видимое излучение
 - 4) рентгеновское излучение
 - 2. Выберите среди электромагнитных волн, излучаемых Солнцем, те у которых длина волны минимальна.
 - 1) видимый свет
 - 2) рентгеновское излучение

- 3) инфракрасное излучение 4) ультрафиолетовое излучение 3.Импульс фотона имеет наименьшее значение в диапазоне частот рентгеновского излучения 2) видимого излучения 3) ультрафиолетового излучения 4) инфракрасного излучения 4. Как инфракрасное излучение воздействует на живой организм?
 - вызывает фотоэффект
 - 2) охлаждает облучаемую поверхность
 - 3) нагревает облучаемую поверхность
 - способствует загару
- 5. Скорость распространения рентгеновского излучения в вакууме
- 1) 3.10^8 m/c
- 2) 3.10^2 m/c
- 3) зависит от частоты
- зависит от энергии
- 6. Какой вид электромагнитного излучения обладает наибольшей частотой?
 - видимый свет
- 2) инфракрасное излучение
- 3) радиоволны
- рентгеновское излучение
- 7. При распространении электромагнитной волны в вакууме
- 1) происходит только перенос энергии
- 2) происходит только перенос импульса
- 3) происходит перенос и энергии, и импульса
- не происходит переноса ни энергии, ни импульса
- 8. Заряженная частица не излучает электромагнитных волн в вакууме при
- 1) равномерном прямолинейном движении
- 2) равномерном движении по окружности
- 3) колебательном движении
- **4**) любом движении с ускорением
- 9. Электромагнитное излучение оптического диапазона испускают
- 1) возбужденные атомы и молекулы вещества
- 2) атомы и молекулы в стационарном состоянии
- 3) электроны, движущиеся в проводнике, по которому течет переменный ток
- **4**) возбужденные ядра атомов

1)	Інфракрасное излучение испускают электроны при их направленном движении в проводнике атомные ядра при их превращениях
3)	любые заряженные частицы любые нагретые тела
1) 2) 3)	З каком излучении энергия фотонов имеет наименьшее значение? рентгеновском ультрафиолетовом видимом инфракрасном

- 12. Выберите среди приведенных примеров электромагнитные волны с минимальной длиной волны.
- 1) инфракрасное излучение Солнца
- 2) ультрафиолетовое излучение Солнца
- 3) излучение у-радиоактивного препарата
- 4) излучение антенны радиопередатчика
- 13. Среди приведенных примеров электромагнитных волн максимальной длиной волны обладает
- 1) инфракрасное излучение Солнца
- 2) ультрафиолетовое излучение Солнца
- 3) излучение у-радиоактивного препарата
- 4) излучение антенны радиопередатчика
- 14. Выберите среди приведённых примеров электромагнитное излучение с минимальной длиной волны.
- 1) рентгеновское
- 2) ультрафиолетовое
- 3) видимое
- 4) инфракрасное
- 15. Импульс фотона имеет наименьшее значение в диапазоне частот
- 1) рентгеновского излучения
- 2) видимого излучения
- 3) ультрафиолетового излучения
- 4) инфракрасного излучения